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Abstract
By a simple dynamical model it is shown that the radial breathing mode
of single wall carbon nanotubes is not exactly radial: its longitudinal and
circumferential components are non-vanishing and both diameter and chirality
dependent. However, the radial component is only diameter sensitive; likewise
the frequency.

Being highly pronounced in Raman spectra and diameter sensitive, and thus important in
SWCNT characterization, the radial breathing mode (RBM) of carbon nanotubes has been
studied intensively over the past decade [1]. However, it is a priori assumed to be exactly
radial. It is more or less well established that its frequency ω decreases with the tube diameter
D as ω = A/D. The value of the coefficient A obtained in several calculations [2, 3] varies
within a few per cent.

Recently, a careful symmetry analysis [3] has shown that this mode may have non-radial
components. Indeed, RBM is one of the totally symmetric modes, with displacement vectors
transforming according to the identical representation 0A+

0 of the SWCNT line group [4] (or
A1g of the isogonal group). As an SWCNT is generated by the symmetry group from a single
atom, any symmetric mode is completely determined by the displacement vector of a single
carbon atom. In the coordinate system with z-axis along the tube, and x-axis radially passing
through the singled out atom C0, the displacement vector of C0 is v = (x, y, z) (with length
v). A purely radial mode should have y = z = 0. However, only in the achiral tubes all the
atoms are in mirror planes, and symmetric modes cannot have a component perpendicular to
this plane: in zig-zag (armchair) tubes the circumferential (longitudinal) component vanishes
as atoms are in the vertical (horizontal) mirror planes.

Symmetry-based calculations [3] within the force constants model on a large number of
SWCNTs (all 1280 of them with diameters 2.8–50 Å) showed that the RBM frequency is only
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Figure 1. Geometry of the model (defining parameters βi , di , ϕ, ϕ′, αi and d0i ): (a) atom C0 and its
neighbours (denoted as 0, 1, 2, 3). (b) Horizontal projections of equilibrium (internal arc) and by
RBM displaced (outer arc) positions of C0 and Ci ; the projections of distances and displacements
are indicated by ⊥.

diameter dependent (A = 2243, ω in cm−1, D in Å). Nevertheless, its longitudinal (z) and
circumferential (y) components make up only a few per cent of the displacements, depending
both on the diameter and chiral angle θ as

z(D, θ) = v(Z1 D−1 + Z3 D−3 + · · ·) cos 3θ,

y(D, θ) = v(Y1 D−1 + Y3 D−3 + · · ·) sin 3θ,
(1)

with the leading coefficients Z1 ≈ Y1 ≈ −0.2.
In contrast, in the frozen phonon method calculations [5] a slight dependence of the RBM

frequency on the tube chirality is found. Within this model it is explicitly assumed that the
RBM is strictly radial, while the square root of the element Dvv of the dynamical matrix is
interpreted as the RBM frequency. Consequently, if the RBM is not radial, this square root is
not an eigenvalue and necessarily depends on θ .

Therefore, it is important to clarify whether the RBM displacements are purely radial.
To this end we consider a very simple nearest neighbours dynamical model, assuming only
that the RBM is totally symmetric. Nevertheless, the model transparently shows that the RBM
frequency is chirality independent, while the displacements have non-radial components being
both chirality and diameter dependent.

Before elaborating the model, we note that a totally symmetric displacement (x, y, z)
increases the energy of the SWCNT. Then, the basic principles require that the normal mode
is in the direction with extremal value of this increase. In other words, for fixed amplitude v

the increase of energy E is a function, say, of y and z displacements (since x2 = v2 − y2 − z2)
and for each SWCNT (i.e. for each D and θ ) this function must have a local extremum
corresponding to the RBM (i.e. close to y = z = 0). Essentially, each dynamical model
introduces such a function, and minimization is performed within the eigenproblem resulting
in phonon dispersions.

As in the radial vibrations the bond angles are almost preserved, the energy is related only
to the stretching of the bonds. This inspires the simplest model we consider: the increase of
energy is a function of the averaged changes in distances to the first neighbours. Each carbon
atom on the tube has three nearest neighbours Ci (i = 1, 2, 3) (figure 1(a)). It is easy to
calculate the distances d0i in the SWCNT stable configuration, being a purely folded graphene
layer:

d2
0i = e2 sin2 βi + D2 sin2 e cos βi

D
, (2)

where e = 1.42 Å is the length of the C–C bond in graphene; the angles between the bonds
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Figure 2. Chirality dependence of ȳ, z̄ (coordinates of minimum of E(y, z) in percentages of the
total displacement length v) and ω = √

897.2E(x̄, ȳ)/Kv2. The twelve curves correspond to the
diameters listed in the panel at the right.

and the chiral vector c = (n1, n2) depend on θ as:

β1 = π

6
− θ, β2 = π

2
− θ, β3 = π

6
+ θ. (3)

When the RBM is excited, each atomic position is changed by the corresponding RBM vector
vi . Elementary geometry (figure 1(b)) gives new distances to the neighbours:

d2
i (ϕ, z) = (e sin βi + 2ζi z)

2 + (D2 + 4v⊥2
+ 4Dv⊥ cos ϕ) sin2 αi

2
. (4)

Here, v⊥ = √
1 − z2 is the length of the projection of the displacement vi to the plane

perpendicular to the tube (it is the same for all atoms); the coefficients ζ1 = −ζ2 = ζ3 = −1
serve to include the fact that the positive longitudinal component z of the displacement elongates
C0–C2, but shortens the other two bonds. Further,

αi = 2e cos βi

D
+ 2Fiϕ

′, ϕ′ = arctan
v⊥ sin ϕ

D
2 + v⊥ cos ϕ

. (5)

Again, F1 = −F2 = −F3 = 1 provides for the positive component y (i.e. ϕ > 0) of the
displacement to shorten the bond C0–C1 and elongate C0–C2 and C0–C3; ϕ = arctan y/x is
the circumferential angle of displacement.

In the considered dynamical model the vibrational energy per atom is assumed to be
proportional to the squared increase of the distance to the three neighbours:

E(y, z) = K
3∑

i=1

(d0i − di)
2. (6)

Substituting here (2) and (4), E(y, z) becomes an explicit function of y and z, with diameter
D, chiral angle θ and elongation v as parameters. Then for each D and θ the coordinates ȳ and
z̄ (independent of v) of its minimum, being the closest to y = z = 0 extreme, are looked for.
Finally, the potential energy of the harmonic oscillator is proportional to frequency ω, mass m
and v2: E = mωv2/2; thus, from (6) one gets ω = √

2E(ȳ, z̄)/mv2.
This task is performed numerically for diameters 3.4 Å � D � 40 Å and all chiralities

(0 � θ � 30◦) in 9384 points on the rectangular grid in steps of 0.2 Å for D and 0.6◦ for θ .
The obtained results are presented in figures 2 and 3. Clearly, the mode is not strictly radial,
as the minimum of E(y, z) is not at y = z = 0. The non-radial components of the RBM
(coordinates of the minimum) depend both on the chirality and diameter of the tube (their
various values give different curves). This dependence has the same form as (1), meaning that
the radial component x is chirality independent. It is significant that the fit of the results gives



L508 Letter to the Editor

Figure 3. Diameter dependence of ȳ, z̄ and ω (see the caption of figure 2). The ten curves
correspond to the chiral angles given in the panel at the right.

Z1 ≈ Y1 as in the precise force constant model (in the model presented, Z1 and Y1 are close
to 0.07; however, the value itself is not of interest, as the model is oversimplified). Note that
for zig-zag (θ = 0) and armchair (θ = π/6) tubes, symmetry conditions are automatically
matched as y = 0 and z = 0, respectively, for any diameter. As for the frequency, it is chirality
independent (the curves for various θ in figure 3, right panel, coincide), and obey an ω = A/D
law. Obviously, the values of ω and A depend on the introduced phenomenological constants
K ; in figure 3 we use 2K/m = 897.2 to get A = 2243 as in [3].

In conclusion, the presented analysis proves that even in the simplest models there are
chirality sensitive non-radial components of the RBM. Also, in this model the frequency is
independent of the chiral angle. Since the calculations are performed for all the diameters and
chiral angles in quite large ranges (given above), and even for those not corresponding to the
simply folded SWCNT, the results are valid for the relaxed structures as well. This makes
the obtained results relevant and important for narrow carbon nanotubes for which the frozen
phonon model is likely to be misleading.
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Kürti J, Kresse G and Kuzmany H 1998 Phys. Rev. B 58 R8869
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