Chirality dependence of the radial breathing mode: a simple model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys.: Condens. Matter 16 L505
(http://iopscience.iop.org/0953-8984/16/49/L02)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 27/05/2010 at 19:22

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Chirality dependence of the radial breathing mode: a simple model

M Damnjanović, E Dobardžić and I Milošević
Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade, Serbia ${ }^{1}$
E-mail: yqoq@afrodita.rcub.bg.ac.yu (M Damnjanović)

Received 6 September 2004, in final form 1 November 2004
Published 26 November 2004
Online at stacks.iop.org/JPhysCM/16/L505
doi:10.1088/0953-8984/16/49/L02

Abstract

By a simple dynamical model it is shown that the radial breathing mode of single wall carbon nanotubes is not exactly radial: its longitudinal and circumferential components are non-vanishing and both diameter and chirality dependent. However, the radial component is only diameter sensitive; likewise the frequency.

Being highly pronounced in Raman spectra and diameter sensitive, and thus important in SWCNT characterization, the radial breathing mode (RBM) of carbon nanotubes has been studied intensively over the past decade [1]. However, it is a priori assumed to be exactly radial. It is more or less well established that its frequency ω decreases with the tube diameter D as $\omega=A / D$. The value of the coefficient A obtained in several calculations [2,3] varies within a few per cent.

Recently, a careful symmetry analysis [3] has shown that this mode may have non-radial components. Indeed, RBM is one of the totally symmetric modes, with displacement vectors transforming according to the identical representation ${ }_{0} \mathrm{~A}_{0}^{+}$of the SWCNT line group [4] (or $\mathrm{A}_{1 g}$ of the isogonal group). As an SWCNT is generated by the symmetry group from a single atom, any symmetric mode is completely determined by the displacement vector of a single carbon atom. In the coordinate system with z-axis along the tube, and x-axis radially passing through the singled out atom C_{0}, the displacement vector of C_{0} is $\boldsymbol{v}=(x, y, z)$ (with length v). A purely radial mode should have $y=z=0$. However, only in the achiral tubes all the atoms are in mirror planes, and symmetric modes cannot have a component perpendicular to this plane: in zig-zag (armchair) tubes the circumferential (longitudinal) component vanishes as atoms are in the vertical (horizontal) mirror planes.

Symmetry-based calculations [3] within the force constants model on a large number of SWCNTs (all 1280 of them with diameters $2.8-50 \AA$) showed that the RBM frequency is only

[^0]

Figure 1. Geometry of the model (defining parameters $\beta_{i}, d_{i}, \varphi, \varphi^{\prime}, \alpha_{i}$ and $d_{0 i}$): (a) atom C_{0} and its neighbours (denoted as $0,1,2,3$). (b) Horizontal projections of equilibrium (internal arc) and by RBM displaced (outer arc) positions of C_{0} and C_{i}; the projections of distances and displacements are indicated by \perp.
diameter dependent ($A=2243, \omega$ in cm^{-1}, D in \AA). Nevertheless, its longitudinal (z) and circumferential (y) components make up only a few per cent of the displacements, depending both on the diameter and chiral angle θ as

$$
\begin{align*}
& z(D, \theta)=v\left(Z_{1} D^{-1}+Z_{3} D^{-3}+\cdots\right) \cos 3 \theta \\
& y(D, \theta)=v\left(Y_{1} D^{-1}+Y_{3} D^{-3}+\cdots\right) \sin 3 \theta \tag{1}
\end{align*}
$$

with the leading coefficients $Z_{1} \approx Y_{1} \approx-0.2$.
In contrast, in the frozen phonon method calculations [5] a slight dependence of the RBM frequency on the tube chirality is found. Within this model it is explicitly assumed that the RBM is strictly radial, while the square root of the element $\mathcal{D}_{v v}$ of the dynamical matrix is interpreted as the RBM frequency. Consequently, if the RBM is not radial, this square root is not an eigenvalue and necessarily depends on θ.

Therefore, it is important to clarify whether the RBM displacements are purely radial. To this end we consider a very simple nearest neighbours dynamical model, assuming only that the RBM is totally symmetric. Nevertheless, the model transparently shows that the RBM frequency is chirality independent, while the displacements have non-radial components being both chirality and diameter dependent.

Before elaborating the model, we note that a totally symmetric displacement (x, y, z) increases the energy of the SWCNT. Then, the basic principles require that the normal mode is in the direction with extremal value of this increase. In other words, for fixed amplitude v the increase of energy E is a function, say, of y and z displacements (since $x^{2}=v^{2}-y^{2}-z^{2}$) and for each SWCNT (i.e. for each D and θ) this function must have a local extremum corresponding to the RBM (i.e. close to $y=z=0$). Essentially, each dynamical model introduces such a function, and minimization is performed within the eigenproblem resulting in phonon dispersions.

As in the radial vibrations the bond angles are almost preserved, the energy is related only to the stretching of the bonds. This inspires the simplest model we consider: the increase of energy is a function of the averaged changes in distances to the first neighbours. Each carbon atom on the tube has three nearest neighbours $C_{i}(i=1,2,3)$ (figure 1(a)). It is easy to calculate the distances $d_{0 i}$ in the SWCNT stable configuration, being a purely folded graphene layer:

$$
\begin{equation*}
d_{0 i}^{2}=e^{2} \sin ^{2} \beta_{i}+D^{2} \sin ^{2} \frac{e \cos \beta_{i}}{D} \tag{2}
\end{equation*}
$$

where $e=1.42 \AA$ is the length of the $\mathrm{C}-\mathrm{C}$ bond in graphene; the angles between the bonds

Figure 2. Chirality dependence of \bar{y}, \bar{z} (coordinates of minimum of $E(y, z)$ in percentages of the total displacement length v) and $\omega=\sqrt{897.2 E(\bar{x}, \bar{y}) / K v^{2}}$. The twelve curves correspond to the diameters listed in the panel at the right.
and the chiral vector $\boldsymbol{c}=\left(n_{1}, n_{2}\right)$ depend on θ as:

$$
\begin{equation*}
\beta_{1}=\frac{\pi}{6}-\theta, \quad \beta_{2}=\frac{\pi}{2}-\theta, \quad \beta_{3}=\frac{\pi}{6}+\theta \tag{3}
\end{equation*}
$$

When the RBM is excited, each atomic position is changed by the corresponding RBM vector \boldsymbol{v}_{i}. Elementary geometry (figure $1(\mathrm{~b})$) gives new distances to the neighbours:

$$
\begin{equation*}
d_{i}^{2}(\varphi, z)=\left(e \sin \beta_{i}+2 \zeta_{i} z\right)^{2}+\left(D^{2}+4 v^{\perp^{2}}+4 D v^{\perp} \cos \varphi\right) \sin ^{2} \frac{\alpha_{i}}{2} \tag{4}
\end{equation*}
$$

Here, $v^{\perp}=\sqrt{1-z^{2}}$ is the length of the projection of the displacement \boldsymbol{v}_{i} to the plane perpendicular to the tube (it is the same for all atoms); the coefficients $\zeta_{1}=-\zeta_{2}=\zeta_{3}=-1$ serve to include the fact that the positive longitudinal component z of the displacement elongates $\mathrm{C}_{0}-\mathrm{C}_{2}$, but shortens the other two bonds. Further,

$$
\begin{equation*}
\alpha_{i}=\frac{2 e \cos \beta_{i}}{D}+2 F_{i} \varphi^{\prime}, \quad \varphi^{\prime}=\arctan \frac{v^{\perp} \sin \varphi}{\frac{D}{2}+v^{\perp} \cos \varphi} \tag{5}
\end{equation*}
$$

Again, $F_{1}=-F_{2}=-F_{3}=1$ provides for the positive component y (i.e. $\varphi>0$) of the displacement to shorten the bond $\mathrm{C}_{0}-\mathrm{C}_{1}$ and elongate $\mathrm{C}_{0}-\mathrm{C}_{2}$ and $\mathrm{C}_{0}-\mathrm{C}_{3} ; \varphi=\arctan y / x$ is the circumferential angle of displacement.

In the considered dynamical model the vibrational energy per atom is assumed to be proportional to the squared increase of the distance to the three neighbours:

$$
\begin{equation*}
E(y, z)=K \sum_{i=1}^{3}\left(d_{0 i}-d_{i}\right)^{2} . \tag{6}
\end{equation*}
$$

Substituting here (2) and (4), $E(y, z)$ becomes an explicit function of y and z, with diameter D, chiral angle θ and elongation v as parameters. Then for each D and θ the coordinates \bar{y} and \bar{z} (independent of v) of its minimum, being the closest to $y=z=0$ extreme, are looked for. Finally, the potential energy of the harmonic oscillator is proportional to frequency ω, mass m and $v^{2}: E=m \omega v^{2} / 2$; thus, from (6) one gets $\omega=\sqrt{2 E(\bar{y}, \bar{z}) / m v^{2}}$.

This task is performed numerically for diameters $3.4 \AA \leqslant D \leqslant 40 \AA$ and all chiralities $\left(0 \leqslant \theta \leqslant 30^{\circ}\right)$ in 9384 points on the rectangular grid in steps of $0.2 \AA$ for D and 0.6° for θ. The obtained results are presented in figures 2 and 3. Clearly, the mode is not strictly radial, as the minimum of $E(y, z)$ is not at $y=z=0$. The non-radial components of the RBM (coordinates of the minimum) depend both on the chirality and diameter of the tube (their various values give different curves). This dependence has the same form as (1), meaning that the radial component x is chirality independent. It is significant that the fit of the results gives

Figure 3. Diameter dependence of \bar{y}, \bar{z} and ω (see the caption of figure 2). The ten curves correspond to the chiral angles given in the panel at the right.
$Z_{1} \approx Y_{1}$ as in the precise force constant model (in the model presented, Z_{1} and Y_{1} are close to 0.07 ; however, the value itself is not of interest, as the model is oversimplified). Note that for zig-zag $(\theta=0)$ and armchair $(\theta=\pi / 6)$ tubes, symmetry conditions are automatically matched as $y=0$ and $z=0$, respectively, for any diameter. As for the frequency, it is chirality independent (the curves for various θ in figure 3 , right panel, coincide), and obey an $\omega=A / D$ law. Obviously, the values of ω and A depend on the introduced phenomenological constants K; in figure 3 we use $2 K / m=897.2$ to get $A=2243$ as in [3].

In conclusion, the presented analysis proves that even in the simplest models there are chirality sensitive non-radial components of the RBM. Also, in this model the frequency is independent of the chiral angle. Since the calculations are performed for all the diameters and chiral angles in quite large ranges (given above), and even for those not corresponding to the simply folded SWCNT, the results are valid for the relaxed structures as well. This makes the obtained results relevant and important for narrow carbon nanotubes for which the frozen phonon model is likely to be misleading.

This research is supported by the Serbian Mininstry of Science (project MNTR-1924) and Deutsche Forschungsgemeinschaft (project DFG 436 YUG 113/2/0-1).

References

[1] Reich S, Thomsen C and Maultzsch J 2003 Carbon Nanotubes (Weinheim: Wiley-VCH)
[2] Jishi R A, Venkataraman L, Dresselhaus M S and Dresselhaus G 1993 Chem. Phys. Lett. 20977 Saito R, Takeya T, Kimura T, Dresselhaus G and Dresselhaus M S 1998 Phys. Rev. B 574145 Rao A M, Richter E, Bandow S, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G and Dresselhaus M S 1997 Science 275187
Richter E and Subbaswamy K R 1997 Phys. Rev. Lett. 792738
Kürti J, Kresse G and Kuzmany H 1998 Phys. Rev. B 58 R8869
[3] Dobardžić E, Milošević I, Nikolić B, Vuković T and Damnjanović M 2003 Phys. Rev. B 68045408
[4] Damnjanović M, Milošević I, Vuković T and Sredanović R 1999 Phys. Rev. B 60 2728-39
[5] Liu H J and Chan C T 2002 Phys. Rev. B 66115416
Hulman M, Kuzmany H B, Dubay O, Kresse G, Li L and Tang Z K 2003 J. Chem. Phys. 1193384
Li Z M, Liu H J, Ye J T, Chan C T and Tang Z K 2004 Appl. Phys. A 781121
Kürti J, Zòlyomi V, Kertesz M and Sun G 2003 New J. Phys. 5125.1

[^0]: $1 \mathrm{http}: / / w w w . f f . b g . a c . y u /$ nanoscience.

